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Fluid transport by cilia between parallel plates 
By N. LIRON 

Department of Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel 

(Received 8 September 1977) 

The problem of fluid transport by cilia is investigated using the Green's function for 
a Stokeslet between two parallel plates. The discrete-cilia approach is used in building 
the model, and a readily usable expression for the velocities is obtained. Dependence 
on the direction of the metachronal wave and on time is not averaged out. Velocity 
fields, pressure fields and fluxes due to a single Stokeslet and to an infinite line of 
Stokeslets are discussed. It is found that the flux associated with Stokeslets in between 
two parallel plates is always zero, in contrast to a Stokeslet parallel to, and above, 
one plate. In  the model one also has to add a plane Poiseuille flow, which incorporates 
non-zero flux. The flow due to the Stokeslet solution imposes a positive pressure 
gradient downstream, and the Poiseuille flow a negative pressure gradient. Calculated 
velocity profiles, in the pumping range, are seen to be time-independent in the centre 
of the channel and vary between a negative parabolic profile and a plug flow. The 
reason for these profiles and some possible biological applications are discussed. 

1. Introduction 
I n  an earlier paper (Liron & Mochon 19763, henceforth referred to as LM) we dealt 

with the propulsion of an organism by cilia. The organism was treated as a flat plate 
in an infinite Newtonian fluid with a regular array of cilia beating in a metachronal 
fashion. A readily calculable expression for the velocity was obtained, enabling us to 
fit kinematically to observed beats, to derive velocity profiles, etc. 

Another very important function that cilia perform is fluid transport, for such tasks 
as feeding and respiration in plants, or transport of gametes in the reproductive system. 
Lardner & Shack (1972) calculated flow of sperm in the ductus efferentes of the male 
reproductive tract, using an envelope model, and got results 50 times smaller than 
those observed (see also Blum 1974). Recognizing the need for a discrete-cilia model, 
Blake (1973) proposed using the model he developed for cilia above a flat plate in 
infinite fluid (Blake 1972), approximating a tubule by two parallel plates, taking the 
one-plate solution near each plate, and finally connecting the two profiles by a flat or 
parabolic profile (see also Blake & Sleigh 1974). Instead, it is suggested that one has to 
determine the solution for a Stokeslet, in a confined region, and then to use that 
solution in the appropriate region. Also, the function of Stokeslets as fluid transporters 
should be looked into. The complete solution for a Stokeslet between two parallel 
plates was given by Liron & Mochon (1976a),  and we apply it here to fluid transport. 

The model we use is an infinite number of cilia, whose bases are equally spaced on 
a flat plate, with all cilia on the same x2 line beating completely synchronously and 
identically, see 0 2. This yields a flow which is periodic in the x2 direction. An infinite 
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FIGURE 1. Similarity between pipe and channel for Stokeslet fields. 

sequence of cilia lined identically on top and bottom plates at  fixed x2 are to be com- 
pared with a finite number of equally spaced cilia attached to the circumference of 
a tube, all the way around it. The similarity of flow in a pipe and channel can be seen in 
figure 1 ,  where equal-strength Stokeslets are pointing into the paper a t  the crosses. 

Each wedge in the pipe is periodically repeated, and on the wedge ‘walls’ we have 
the normal velocity equal to zero. This wedge (shaded area in pipe) is to be compared 
with a parallelepiped with the bottom wall at  x3 = 0, and the top ‘wall’ at  x3 = 4H 
(shaded area in channel). If Stokeslets are close to the wall and densely packed those 
two regions (wedge and parallelepiped) are very much alike. As Stokeslets get more 
and more dense, we approach an axisymmetric flow in the pipe, and a two-dimensional 
flow in the channel. Further similarities will be seen in 433 and 4. 

In  $ 2 the model used is presented. This model is similar to the one in LM with the 
important exception that a plane Poiseuille flow has to be added here. Flux due to 
Stokeslets is discussed in $ 3, showing the basic difference between Stokeslets above 
one plate, and in between two plates. The first produces non-zero Aux for a com- 
ponent parallel to the plate, but the latter always produces zero flux. Flow fields due to 
infinite lines and arrays of Stokeslets, their flux and pressure fields, are discussed in 
$4, and some numerical results given. The pressure field is discussed in $ 5. Numerical 
results for the model are given in $ 7. Ramifications of these results are discussed in $8. 

2. The model, arrays of cilia 
2.1.  One plane lined 

Let the plane on which the bases of the cilia are lined in a two-dimensional regular 
array be at x3 = 0. The cilia array is depicted in figure 2 .  The co-ordinates of the cent&’- 
line of the cilium a t  the origin are 

t )  = (<1(s, t ) ,  52@, t ) ,  <3(& t ) ) ,  0 < < L, 0 < t < T, ( 2 . 1 )  

where T is the period and L is the length of a cilium. All cilia are described in an array 
and their co-ordinates are 

sL,,cs, t )  = (ma + <1(s, T m ) ,  nb + 52(s, Tm),  <&, 7m)), 
~ , = ~ m a + u t ,  m , n = 0 , + 1 , & 2  ,.... ( 2 . 2 )  

This representation describes a metachronal wave in the x1 direction, symplectic 
(minus sign in 7,) or antiplectic (plus sign in T ~ ) .  The wave has velocity c = a / K ,  

wavelength 2 n / ~  and frequency g / 2 1 ~ .  The period is T = 21~/cr. 
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FIGURE 2. The model of cilia distribution. 

The problem of a ciliated organism swimming in an infinite medium, which was 
approximated by an infinite plate with cilia attached to it, was treated in LM. Each 
cilium was approximated by a Stokeslet distribution along its centre-line. The basic 
Stokeslet solution was the solution for a Stokeslet above a flat plate (Blake 1971). The 
total velocity was found by summing over all cilia. The situation is somewhat different 
here, as one can add a plane Poiseuille flow to that found by summing over all cilia. 
The total velocity u between the two plates is composed of two parts, 

(2.3) u = u(') + UW, 

where u(1) is a plane Poiseuille flow in the x1 direction, i.e. 

with 

We shall see later on that we can take C ( t )  to be independent oft in the model. 
The velocity field d2) is due to the Stokeslet distribution on all cilia, and is 

Here, each cilium is approximated by a distribution of Stokeslets of strength F along 
the centre-line. The basic Stokeslet solution (Green's function), G?(x, g), is the j th  
component of velocity induced at x by a force singularity at pointing in the k direc- 
tion, with zero velocity on the planes x, = 0, x, = H and G," -+ 0 as x; +xi -+ 00. This 
function is given by Liron & Mochon ( 1 9 7 6 ~ ) .  As in LM, we assume the periodicity 
conditions 
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where the plus sign stands for antiplectic metachronism and the minus sign for 
symplectic metachronism. From (2.7) and (2.8) we deduce that 

(2.9) 
where 7, is defined in (2.2). 

The proof is similar to that given in the appendix of LM, and hinges on the fact that 
the Green's function, in both cases, depends on x l ,  el, x2 ,  c2 only through x1 -el and 
x2 - C2. Taking an average in t,he x2 direction we get 

F(Ek,n(s, t ) )  = F(E(8, T m ) ) ,  

5" = E(8, T m ) ,  j = 1,233, 

and if we have for the wavelength 
h = m,a = % / K ,  (2.11) 

bhat is we have m, different cilia configurations before the pattern repeats itself, then 
we obtain 

(2.12) 
l m o - l  L 

; i i j ( x 1 , x 3 , t )  = - c So p k ( v )  n?(x1 - ra, x3, W ,  t ) )  ds + uy)(x, t ) ,  
b r=O 

and the kernel Of is 

This kernel can be brought into an amenable form for computational purposes using 
methods similar to those used in LM, see appendix. The pressure field associated with 
this flow field is discussed in $5. 

2.2. Two planes lined 

Since we are interested in an approximation to a pipe we shall assume that both planes 
are lined with cilia in the same way, and the cilia lined on one plate have the same 
beat and the same wave speed as the cilia lined on the other plate. In  other words we 
shall assume that the cilia whose bases are lined on the plate at  x3 = H are a reflexion 
in the centre-plane x3 = &H of the cilia whose bases are on the plate at  x3 = 0. It is not 
essential that the cilia beat with the same phase on top and bottom plates. I f  each 
cilium has the same beat, and the wave speed is the same, then (2.9) still holds. The 
assumption of reflexion simplifies the computations. The reflexion conditions are 

(2.14) 

from which we get that the mean velocity in this case is 

+ ( ~ j 1 + ~ j 2 - ~ j 3 ) ~ ~ ( x l - r a , H - s 3 , ~ ( ~ , t ) ) d ~ + u ~ ) ( ~ , t ) ,  j = 1,2 ,3 .  
(2.16) 

For the definition of v, see (2.10). 
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3. Flux and pressure due to Stokeslets 

3.1. Stokeslets above a $at plate 

The solution (Green’s function) for the velocity due to a Stokeslet situated at  
5 = (&, E2, t3) pointing in the kth direction (k = 1 , 2 , 3 ,  Cartesian co-ordinates) was 
given by Blake (1971). This is 

where 
a = 1’2, r = Ir(, R = IRI, 

and 

The flat plate is defined by x3 = 0. 
The pressure is given by 

To find the total flux created by the Stokeslet in a given direction, we have to 
integrate Gjk over a plane perpendicular to that direction. Clearly there is no net flux 
in the x3 direction, since by incompressibility we can integrate over any plane per- 
pendicular to the x3 direction, so choose the plane x3 = 0. Integrating we find that the 
total flux in a given direction is always zero except for the flux in the x1 direction when 
the force singularity is also in that direction (or the x2 direction with the force in x2 
direction). In this case we get 

so that we get a net flux directly proportional to the height of the singularity above the 
plate. This result blends uniformly into the case of an infinite medium (no plate). As 
t3 -+ GO the total flux also tends to infinity. The solution for the velocity due to a Stokes- 
let in an infinite medium is 

(3.5) 

and clearly 

From (3.3) we see that pk-+O, as lri +a, which is the same as for a Stokeslet in an 
infinite medium where the pressure is given by 

l r  
p k  = z-. 



710 N .  Liron 

3.2. Xtokeslets between two $at plates 
The Green's function for a Stokeslet between two flat plates was given by Liron & 
Mochon ( 1 9 7 6 ~ ) .  Because of the lengthy expressions we shall not reproduce them 
here, but rather the asymptotic form for large distances from the Stokeslet which 
suffices for our purposes. Let H be the distance between the two plates, and let xi, & be 
measured in units of H. Then the Green's function is 

.f 8j38k30(p-*H-'eXp [ - p y l ] )  + (8jsdka+ 8k38ja) 0 %p-hH-*exp [-py1] , 

(3.7) 

(P 1 
p2 = r!+rg, y1 N 4.2124, p 8 1, a = 1 , 2 ,  /3 = 1 , 2 .  

r is given in (3.2) and a,/? take on the values 1 and 2. Clearly the total flux in the x3 
direction is zero as before, without any computations. To get the flux in the x1 direction 
(x2 direction), we can take any x1 (any x2) because of incompressibility, thus we can 
take p 9 1 and use (3.7). Integrating the exponential terms of Gi over x, and x2, one 
obtains finite numbers multiplying exp ( - rlyl) or exp ( - r l r )  and, since rl is arbitrary, 
these terms have zero contributions to the total flux. 

Also 

and it follows that the total flux is zero in all cases. This is clear since the far-field 
behaviour is (for a Stokeslet parallel to the plates) a two-dimensional source doublet 
in planes parallel to the two plates, with height-dependent strength, see Liron & 
Mochon ( 1 9 7 6 ~ ) .  Clearly a source doublet induces zero flux in any given direction. 

This result may be unexpected as it can be shown that the solution for a Stokeslet 
between two plates converges to the solution for a Stokeslet above one plate, if we 
let the other plate go to infinity keeping everything else fixed. Moreover, the conver- 
gence is uniform. Nevertheless the flux induced by a Stokeslet parallel to one plate is 
not zero in this direction whereas it is zero when a second plate is present, at any 
finite distance H .  

The solution for the pressure for large distances from the Stokeslet is 

where again ra,  p and t3 are measured in units of H. Here we have the same type of 
exponentially small remainder terms as for the velocity given in (3.7), see Liron & 
Mochon ( 1 9 7 6 ~ ) .  Again we see thatpk-+O asp-tco. 
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3.3. lnJinite sequence of Stokeslets 

The model we deal with considers a uniform infinite array of cilia, with all cilia whose 
bases are at (xl,bn, 0 ) ,  n = 0,  f 1, f 2, ..., beating synchronously. Thus one should 
look a t  a sequence of Stokeslets in between two plates, with co-ordinates 

L = ( t l , E 2 + n b , t &  n = 0 ,  f1, - t -2 , . . . ,  (3.10) 

where 0 < ‘, < H ,  and the two plates are at x ,  = 0 and x, = H .  We assume these 
Stokeslets are all of equal strength and pointing in the x1 direction. Clearly the total 
contribution from this sequence is a periodic velocity field in the x2 direction with 
period b. Moreover their sum is a solution for the flow due to a Stokeslet at  (&, t2, &,) 
pointing in the x1 direction, inside a parallelepiped the walls of which are given by 
x,  = 0, x3 = H ,  x2  = c2 + i b ,  x2 = t2 - i b ,  with no-slip conditions on x3 = 0,  and 
x, = H ,  and zero normal velocity on x2 = t2 f i b .  This parallelepiped repeats itself, 
see figure 1. 

Summing for the flux, we get zero flux in each of the above parallelepipeds. Indeed 
if we have to solve for a Stokeslet inside a tube of arbitrary cross-section, then we also 
impose the condition that, as x1 -+ f 03, u -+ 0. The flux is bounded by the maximum 
velocity multiplied by the cross-sectional area (which is finite) and since u --f 0, we 
must have zero flux, by incompressibility, in general. By this argument we must have 
zero flux in each parallelepiped, and the solution there is given by the sum of the 
infinite sequence of the identical Stokeslets. By symmetry the contributions of all 
Stokeslets to the flux through one parallelepiped is equal to the contribution of one 
Stokeslet to the total flux between two plates, so the latter must be zero. 

Thus, a basic difference between the Stokeslet in a partially confined region and in 
an ‘open’ region emerges. One should remember, though, that in the model we also 
have to add the plane Poiseuille flow u(l), see (2 .4 ) .  

If we sum the constributions for the pressure in the x1 direction of the sequence of 
Stokeslets discussed above, see (3.10), when they are situated above one flat plate, 
then again the pressure goes to zero as lrll -+a. On the other hand if we sum the 
contributions to the pressure in the x1 direction from the same sequence of Stokeslets 
situated between the plates, then the pressure does not go to zero as Irll +GO. Indeed, 
from (3.9), the pressure due to the above sequence is 

m i 

- 3 i n  sinh ( 2nr1/b) - x2 “(‘ - “I ‘l b2 2(r,lb) sinh2 (nrl /b)  + sin2 (nr2/b)’ 

2H2b ‘3(1 -“)sinh2 (nrl/b) + sin2 (nr2/b)’ 
3 sinh (2nrJb) 

=- 

from which we get 

rl-+-oo. 

(3.11) 

(3.12) 
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FIGURE 3. Infinite periodic sequence of Stokeslets down a pipe. 

Thus this sequence of Stokeslets raises the pressure from a constant value - A  at 
rl = -00 to a value + A ,  at rl = + 00, and the total pressure rise is 2A. One should note 
again the parallelism between this result and the pressure due to a Stokeslet (or finite 
number of Stokeslets situated on a cross-section) in a pipe. If we have a Stokeslet 
in a pipe pointing in the z direction (see figure 3)) then this Stokeslet will raise the 
pressure from some constant - B  a t  x = -00, to + B  a t  z = +a, Liron & Shahar 
(unpublished work). 

4. Flow fields due to Stokeslets between two plates 
Let us look at the pipe, or one parallelepiped of figure 1. To get the flux, one inte- 

grates the downstream velocity due to the contribution of all Stokeslets, over the 
pipe cross-section, plus the Poiseuille flow. 

Let us look at an infinite periodic sequence of Stokeslets of unit strength all pointing 
downstream, as shown in figure 3. Let u(x, xi) be the velocity at  a point x due to the 
Stokeslet at xi in the x direction. The flux due to this line of Stokeslets is 

Q = Q 1 +  Q2 ,  

A being the cross-section of the pipe. Q1 is the flux due to the Stokeslet solutions, and 
Qz is the flux due to the Poiseuille flow. The flux due to each xi separately is zero. 
The flux Q1 will be zero if we can change the order of summation and integration 
(since A is compact, and all the functions u(x, xi) are continuous on A,  for a cross- 

section not through one of the Stokeslets). This is permissible if the sum x u(x, xi) is 

uniformly convergent for all x on A. The question is therefore, how does the veZocity 
u(x, <) decay with distance x from the Stokeslet at <. If the velocity decays like r-2 for 
instance (r measuring the distance), then convergence is uniform since we are summing 
a series of the form 2 l/n2. For a Stokeslet in an infinite medium velocity decays like 

r-l ,  and we are not allowed to change the order of summation and integration. 
As we shall see below the velocity field from the line of Stokeslets (3.10) decays 

exponentially up- or downstream (as is the case for a Stokeslet in a pipe), and thus 

m 

i = - m  

n 

Q1 = 0. (4.2) 
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Let us consider again the infinite sequence of Stokeslets, all with the same strength, 
pointing in the kth direction, k = 1 or 2, and situated a distance b from each other as in 
93.3. The Stokeslets’ co-ordinates are as in (3.10), 

5, = (61, 6,  +nb, 6319 = O ,  rf: k 2, 9 (4.3) 

and we want to find the velocity at the point x = (x,, x2,  x 3 ) .  Let r be as in (3.2). Then, 
looking at  x such that p2 = r; +r i  B 1,  we get from (3.7) that 

r ;  = r l ,  r ;  = r2 - nb, (4.4) 

where a and ,8 take on the values 1 and 2. 
For u: we have the sum 

(4.5) 
I -- - 7l sinh ( 27rr1/b) W 

c 
n= - r; + (r2 - nb)2 2br, sinh2 (nr,/b) + sin2 (nr2/b)* 

We thus obtain 
sinh (27rrJb) 

6 3 ( 1 - t - 3 ) 5 3 ( 1 - x 3 ) - -  sinh2 (TrJb) + sin2 ( m , / b )  
3 1  

27rp H 
u; N --- 

Differentiating the expression within the square brackets we see that it behaves like 
exp [ - 2ml /b]  for r, 9 1, and therefore this term is exponentially decreasing. For u?j 
we have the term 

(4.7) 

and we therefore obtain 
- 1  

and again the same conclusion follows. u; is asymptotic to the same expression as u,l, 
and ui to the negative of u:. Thus such a distribution of Stokeslets along a line reduces 
their influence to the vicinity of the line itself, with exponentially decaying influence 
away from the line, whether they act in the direction of the line, perpendicular to it, 
or in any other direction. In  particular the velocity decays exponentially, away from 
the Stokeslet in each parallelepiped described in $ 3.3. 

Again the same parallelism holds between this line of Stokeslets and a single 
Stokeslet in a pipe, where velocities decay exponentially away from it with 121, see 
Liron & Shahar (unpublished work). 

As mentioned above we model each cilium by a Stokeslet distribution along 
its centre-lines, see $2, and the sequence of cilia whose bases are at  (ma,nb,O), 
n = 0, _+ 1, i 2 , .  .., all beat identically and synchronously. They all have the same 
Stokeslet distribution a t  each instant in time. Therefore the above result shows that 
the effect of this row of cilia, as far as appreciable fluid movement is concerned, is 
limited to the vicinity of this cilia row (ignoring the Poiseuille flow). If fluid is to be 
continuously moved along the top of the cilia layer, perhaps carrying with it food 
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FIGURE 4. The kernels ApD:, ApD& K vs. xs for various 7, for K = 0.3, 
& = 5.0, H = 20. All quantities in pm.  See (A 2). 
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FIQURE 5. The kernels ApD:, ApD& K vs. zs for various 7, for K = 0.3, 
tS = 10.0, H = 20. All quantities in pm. See (A 2). 
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FIGURE 6. The kernels ApDi, A@!, K vg. xQ for various T ,  for K = 0.3, 
5, = 5-0, H = 20. All quantities in pm. See (A 3). 

particles or some chemicals, then rows of ciliashould be densely packed, densely enough 
that the near fields of adjacent rows overlap. This is indeed what is observed in 
ciliated organisms. 

In  the model we have lines of Stokeslets spaced at a distance a in the x1 direction 
(up- and downstream). For a < H (the biological situation), the far-field approxima- 
tion is invalid, i.e. at no point are we far away from all lines of Stokeslets. Equation (4.6) 
does not depict the correct picture in this case. To demonstrate this let us look at  
equation (4.6), and integrate over r2 (or x2) over the width of one parallelepiped. We 
obtain zero flux [zero Q1 in (4.1)] for any x3, which is expected, since the dependence 
on x3 is through x3( 1 - x3) which is non-negative. That is, the ffux is zero in each plane 
parallel to the walls (which is the picture of potentials). It follows that if, for some x1 
and x3, we integrate the u: velocity along x2 over the width of the parallelepiped, any 
appreciable deviations from zero would be due to the lines of Stokeslets near it (the 
contributions of the other lines are exponentially small anyway), and are therefore 
the near-field contribution. 
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FIGURE 7.  The kernels A,uDi, h,uD;, K us. xs for various H, for K = 0.3, 71 = 8.0, t3 = 9.6. 
All quantities in ,urn. See (A 2). 

This suggested integral is exactly the kernel Di defined in equation (2.13) and 
given explicitly in the appendix. 

The kernel ApDF = ( 2 r r p / ~ )  Dj” is given in figures 4 to 7 for various values of H ,  
and compared with the kernel of Blake (1972), K(x3,g3) ,  see also LM. Figure 4 
shows ApDi and ApD; us. x,, for H = 20, the Stokeslets situated at E3 = 5.0, for various 
values of 7 = xl-&. As in LM we take K = 0.3, and note that 0: blows up for 7 = 0 
when x3 = g3, and that 7 is bounded by T K  < rr. 

Two results should be noted. The first is the large deviations of D:, Dg from K ,  much 
larger than the kernel Hj” given in LM for the flow in a semi-inhite fluid above a flat 
plate. The second is that D: becomes negative on part of the x3 axis. This is due to the 
fact that the total flux in the x1 direction is zero. Since the kernel D: is the velocity of 
Stokeslets in the x1 direction averaged over x2, integrating over x3 yields the flux of 
those Stokeslets in the x1 direction and so must be zero. Consequently 0% is closer to K 
than 0:. The same results can be seen for the symmetric case exhibited in figure 5 ,  
where c3 = 10 and H = 20. For E3 = 5-0, H = 20, ApD:, ApDi and ApDE us. x3 are given 
in figure 6 (compared with the kernel K = 0). Unlike the parallel one-plane case Di and 
0; are not so close as H i  and H :  (LM) and are given separately. These are certainly 
comparable to the ‘major’ terms D: and Di. ApD: and ApDi for c3 = 9.6, 7 = 8, for 
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various H are shown in figure 7. As H increases, i.e. the second plate moves further 
and further away, D: and Dl move closer to H i  and H i  respectively (and thus to K )  
given in LM, thus approaching the one-plane case for x3 finite and fixed, and H +co. 

It should not be surprising that the kernel 0: deviates from K.  Flux exists in the 
one-plane case since the sum of the contributions of all Stokeslet solutions gives the 
complete flow picture. For the two-plate case the sum of all Stokeslet solutions does 
not give the complete flow picture and a Poiseuille flow has to be added. Thus K 
incorporates flux and, as we have seen, D does not. 

5. The pressure field 
Associated with the velocity field given in (2.12) we also have a pressure field. We 

have already seen that the infinite sequence of identical Stokeslets described in 53.3 
raises the pressure from x, = - 03 to x, = + 03 by a finite amount. Consequently it is 
not possible to sum the contributions to the pressure, but rather, one should look at  
the sum of contributions to the pressure gradient in the x ,  direction. Let the pressure 
field associated with u(l) be p(I), jd2) associated with d2), and p = p(l) + P ( ~ ) .  The average 
pressure gradient field (averaged over x 2 )  associated with the velocity field U given 
in (2.12) will be 

where from (2.5) 

and 

The kernel Bk is given by 

(5.3) 

where p k  is the pressure field associated with the velocity field G,k discussed in 5 2, and 
is given in Liron & Mochon (1976a). 

Using methods similar to those in LM, one can transform the kernel Bk to the 
following form : 

B2 = 0,  

W K q  sinh t3Kq cosh ( H  - 
q = l  sinh HKq 
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where 7 = x1 - tl. For x3 < g3 replace x3 by H - x3, t3 by H - t3 and 7 by - 7. The 
functions A,(A), A6(h) are (see Liron & Mochon 1976a) 

A,(h) = h2[sinh2hH - (hH)2]-1 

)] sinh AH sinh h(H - 5) x([sinhAH- d (-)+ARa( sinhhg3 
d h  sinhAH 

d sinh sinhhH A(H - t3) 

+ [ht3H sinh h(H - t3) + ( H  - t3) sinh A t 3  sinh AH] cosh A(H - x3) , I 
A6(h) = ha[sinh2hH- (AH2]-' 

[hE3 H sinh h(H - t3) - (H - g3) sinh A t 3  sinh AH] sinh h(H - x3) 

)] sinhhHcoshA(H-x3) sinhAt3 -AH-  d sinh h(H - t3) [ d h  ( sinhhH ) d h (  sinhhH 
- sinhAH- ~ 

The kernel b-lBk gives the pressure gradient due to a doubly infinite sequence of 
Stokeslets of unit strength pointing in the lcth direction, situated at 

(E1+nh,&+mb,(3) ,  n = 0, t- 1, ..., m = 0, t- 1 ,  ..., h = m,a = 2 n / ~ ,  (5.7) 

and averaged in the x2 direction. 
The average pressure rise per wavelength h is, from (5.5), 

Notice that this pressure rise is exactly fhe pressure rise from - 00 to + co due to the 
sequence of Stokeslets described in 33.3  [only n = 0 in (5.7)] and given in (3 .12) .  [The 
additional power of H in the denominator of (3 .12)  is due to the fact that b in (3 .12 )  is 
measured in units of H ,  whereas we have not done this normalization here.] It follows 
from (5 .3 )  that the pressure rise per wavelength for iiz is 

6 m.-1 L 
= bH zo I0 Pl@) g (1 - g) ds. (5.9) 

From (5 .2)  we obtain the pressure rise per wavelength due to the Poiseuille flow, 

A$') = hC(t). (5.10) 

We are interested in the cilia performance in the pumping range. This range is the 
range for which we have non-negative average flux per period, Q 3 0, while the pressure 
rise per wavelength is also non-negative, Ap b 0. It has been shown by Liron (1976) 
that for a periodic flow the pressure rise per wavelength is independent of the lateral 
co-ordinate x3 a t  which it is measured. Although the flow field d2) in the sublayer 
region has large fluctuations, it turns out to be practically time independent for 
equivalently independent of xl), at about a height of 2L,  where L is the length of 
a cilium. This has been seen in LM and the reason for it will be explained below. Thus 

is practically time independent. The flux is non-negative for C(t )  < 0, since the 
contribution to the flux due to d2) is zero, see (4 .2 ) .  We may therefore write 

AP = (1  -a) Aj32), (5 .11 )  

where 0 < 01 < 1 in the pumping range, and C( t )  = Cis a constant independent of time. 
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Let us look at the kernel 0: given in the appendix. 0: consists of a linear term in x,, 
(~/27r,u) 5,( 1 - x 3 / H ) ,  aparabolic term in x,, (~/27r,u) 3t3 (1 - & / H )  (1 - x 3 / H )  x3 /H,  both 
independent of xl, and several infinite series which do depend on xl. If  H is not too small 
then the infinite series can be neglected for x, not very close to c,. A linear term does 
not have a pressure gradient associated with it. Thus, the dominant term in this 
region is the constant pressure gradient associated with the parabolic part. This is the 
constant term in (5.5) (which is independent of x1 and x3). 

In  the case of two planes lined, we have seen in $2.2 that we use the kernel 
Dj”(xl, x,, g )  + (Sjl + Sj, - 4,) Dj”(xl, H - x,, 5). In particular instead of 0: we use 
Di(xl, x,, 5) -I- Di(x,, H -5, 5). In  this case the constant term in (5.5) is doubled, and 
likewise Ap changes to 2Ap in (5.8). 

6. Integral equations for the force distribution 
In  order to find the force distribution on the cilia, to use in (2.12) or (2.16), we fit 

kinematically to an observed cilia beat, as has been done in LM. The averaging in the 
x2 direction only is equivalent to replacing the discrete cilia by an array of waving 
sheets. We demand that, on all cilia, the computed velocity is the observed velocity. 
Thus for one plane lined, 

+uy)( { (~) , t ) ,  n = 0,1,  ..., m,- 1, j = 1,2,3,  o < B < L, (6.1) 

where p is defined in (2.10). 
Equation (6.1) is not sufficient to determine the forces uniquely, as we have u(1) at 

our disposal, see (2.4). Since we are interested in the pumping range, see $5, we may 
specify in addition either the flow rate Q ,  or the pressure rise per wavelength, AT 
(which are proportional to one another). Choosing Aj5 as known, and combining (5.9) 
and (5.11) for the pressure rise, we obtain 

where a is a given number, 0 < a < 1.  
The velocity u(l) is then given by 

The two extreme cases in the pumping range are as follows. (i) Q = 0, in this case a = 0, 
u(1) = Oand weareleft to solve only (6.1). Here AT is maximal. (ii) A23 = 0. In  this case 
CY = 1 and we get the maximum flux, QmaX. 

For all cases 0 < a: < 1, we can combine (6.1), (6.2) and (6.3) into one equation. 
Equations (6.1)-(6.3) are non-dimensionalized by taking L as the length scale, uL as 

the velocity scale, u-1 as the time scale and,uuL2 as the force scale (Fk in the equations 
is force per unit length and has dimensions of ,uaL). 
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FIGURE 8. The model for cilia beat (reproduced by the computer) for one wavelength. 
Increasing numbers indicate positions of cilium in consecutive fixed time intervals. AIL = 1.4. 

Equations (6.1)-(6,3) now become 

Now all quantities are non-dimensional, i.e. b, a, A, H ,  g stand for b / L ,  a/L ,  AIL, H I L ,  
g /L  respectively, etc. For two planes lined we again have (6.4)-(6.6), where we replace 
Dt(x1, x,, g )  by Dt(xl,  x3, g )  + (Sjl + Sj, - Sj3) D$(zl, H - x3, g ) ,  and replace Ag by 2Ap. 

These equations were solved numerically and the details are discussed in the next 
section. 

7. Numerical results 
7.1.  Description of the moving cilium and solution of integral equations 

The description of the moving cilium is achieved by discretizing it and fitting each 
segment by a Fourier series in time to the path of the corresponding section of the 
cilium. This method is described in LM. We use the same beat that we used in LM. In  
figure 8 we depict the different cilia in one wavelength, which correspond also to 
different positions of one cilium a t  fixed time intervals in one time period. Increasing 
numbers represent increasing time. 

To solve for the forces in (6.4), (6.5) we replace the integrals by a quadrature 
formula (we used the mid-point rule), thus having to solve 3m0 N linear inhomogeneous 
equations with the same number of unknowns. It should be noted that, when doing 
this, singularities occur in Df when r = n and 8 is equal to one of the nodes of the 
quadrature formula. Since Df(x,  5) is the velocity at x due to a Stokeslest at 5, and 
we want to match velocities on the cilium surface, we replace Dt(&, Es,  5) by  
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FIUIJRE 9. Velocity component in the z1 direction, zJ, for Q = 0 in the cilia layer m. zQ for 
various values of H :  - , H = co; ---, H = lOOL, - * . ;  H = 1OL; -.-.-, H = 1OL with both 
planes lined with cilia. z1 = h/4L. Beat as in figure 8. 

Of(& + 6, &, 5 )  for those points, where &is the cilium radius. This will yield a large, but 
finite, number. 

We are interested in the pumping range, and as we have already pointed out in the 
previous section the case of Q = 0 yields the maximum Ap. We therefore solve the 
equations in this range in two steps. 

Step 1.  Solve (6.2) with u(l) = 0, and then obtain A T a x ,  from (6.5), taking a = 0, 
there. 

Step2. Take Afi = (1 -a)Apmax in (6.5), for some 0 < a < 1, and then solve (6.4)- 
(6.6),  or equivalently solve 

(7.1) 

For the two planes lined with cilia, replace Df and ApmaX appropriately, as described 
above. 

7.2. Velocity proJiles 

We demonstrate the results by showing some calculated velocity profiles. In figure 9 
velocity profiles in the cilia sublayer are shown for x1 = h / 4 L ,  for the case of Q = 0 
(AT = AT"").  We see that the presence of the top plate reduces the velocity at the 
top of the cilia layer, but that it approaches the velocity of the one-plane case as the 
distance between the plates increases. 
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FIGURE 10. Velocity component in the z1 direction, El(zl,z,), outside the cilia layer for (? = 0, 
and for Ap = 0, one plane lined. (a)  H = lOL, (b)  H = 1OOL. Beat as in figure 8. 

Two examples of velocity profiles in the region between the plates, outside the cilia 
layer(s), are shown in figures 10 and 11. The two cases shown are H = 1OL and 
H = lOOL for one plane lined in figures 10(a) and ( b ) ,  and for two planes lined in 
figures 11 ( a )  and (b ) .  These profiles are independent of x1 (or t )  and in each the two 
extreme cases are shown; Q = 0, A T " "  and Aj3 = 0, Qmax. 

Of particular interest is the result that the profiles are time independent, and that 
for AP = 0 we get a flat velocity profile, i.e. a plug flow for two planes lined. Closer to 
the cilia layer(s) velocity profiles do exhibit time fluctuations but blend into the 
given profiles. These results are discussed in the next section. 

8. Discussion 
We have presented here a model of cilia fluid transport between parallel plates. 

The model for the cilia layer(s) depends both on time and on the direction of the meta- 
chronal wave. Similarities between this model and flow in a tube were shown, so that 
the same qualitative phenomena are expected to occur also in the tube. A Stokeslet 
above a flat plate was compared with a Stokeslet between flat plates. It was found that 
a Stokeslet above a flat plate creates a non-zero flux when pointing parallel to the 
plate, whereas a Stokeslet between parallel plates produces zero flux. Unlike the one- 
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FIGURE 11 (a;). For legend see next page. 

plate case, where the solution is obtained by summing over all Stokeslets, in the two- 
plate case one must also add a plane Poiseuille flow. The Stokeslet solution alone 
creates a positive pressure rise per wavelength Ap, with zero flux (Q = 0). Lowering the 
pressure rise per wavelength causes a positive flux. 

0 ) ,  and velocity profiles for 
the two extreme cases are shown in figures 10 and 11 both for one plane lined and for 
two planes lined. In the mid-region between the plates the velocity profiles are time 
independent. The reason for this is the structure of 0: given in the appendix, and is 
explained in $ 5 .  

For one plane lined Di, which is the Stokeslet solution only, consists essentially of 
a linear function and a parabolic function in the mid-region. This explains the profiles 
for Q = 0, ATmax, in figures lO(a) and ( b ) .  The other extreme in the pumping range is 
A p  = 0, and is seen to be a linear function. Indeed, only the parabolic profile has a 
pressure gradient associated with it, and demanding that A p  = 0 is equivalent to the 
annihilation of the parabolic part in the Q = 0 profiles, leaving only the linear part. 

The case A@ = 0 is of particular interest for one plane lined, as this can be looked 
upon as a swimming ciliated organism next to a wall. This is achieved by moving the 
non-ciliated wall in order to create an opposite shear flow exactly cancelling the shear 
flow profile in figures lO(a) and ( b )  (the co-ordinate system is moving with the ciliated 
plate). The condition A p  = 0 is equivalent to the demand that the average force per 

We are interested in the pumping range (Q 2 0, A p  
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FIQURE 11. Velocity component in the z1 direction, El(zl,z3), in the mid-region for Q = 0, and 
for AF = 0, two planes lined. (a)  H = lOL, (b )  H = 1OOL. Beat as in figure 8. 

wavelength on the organism is zero. In  the case of a swimming organism in infinite 
fluid, treated in LM, one can check that indeed Ap = 0 there. 

For two planes lined the kernel replacing 0: is a combination of Di on both plates. 
In the mid-region it turns out to be essentially a parabolic profile, with twice the 
pressure gradient as in the previous case, and in addition this time, not a linear 
function, but a constant. This explains the parabolic profiles we see for Q = 0 in 
figures 11 (a) and ( b ) .  Again only the parabolic part has a pressure gradient associated 
with it, and thus for the case A13 = 0 we are left with the constant part only. This 
explains the ‘plug flow’ we observe in figures 1 1  (a )  and ( b )  for Ap = 0. Blake (1973) 
has suggested using the one-plane model on each plate, and joining them by a flat 
profile. We see that this would indeed be a good approximation if the two plates are not 
too close (relative to a cilium length), and provided the additional condition, Ap = 0, 
is met, i.e. the pumping by the cilia operates at ‘peak performance’. As we see, in this 
case the cilia operate to provide a free slip condition near the boundaries, resulting in 
a plug flow in the middle region. If Ap > 0, the profiles in the mid-region will lie between 
the two profiles given in figure 11. 

Both the case Q = 0 and the case Q > 0 may be of biological importance. As seen in 
figure 11 (a ) ,  if cilia extend a non-negligible distance into the channel, the backflow is 
quite strong for Q = 0 in the middle region of the channel. This may explain the 



Fluid transport by cilia between parallel ptutes 725 

ability of sperm to be moved up the oviduct from the uterus in the direction of the 
ovary (the ampulltGisthmus junction is completely occluded so that we must have 
Q = 0). This (rapid) movement is achieved although cilia beat in the direction of the 
uterus, and spermatozoa were observed to be swept along by the ciliary current 
when applied to the surfaces of opened oviducts a t  such a rate that their own flagellar 
activity was of almost no avail against the ciliary current, see Blandau (1969). 

In the ductusefferentes of the male reproductive tract, water is known to be 'pushed' 
into the tubes across the membranes. Thus a positive flux is created. The velocity 
profiles may be a parabolic profile lying between the profiles depicted in figures 11 (a )  
and ( b ) ,  or even a positive parabolic profile if the flux exceeds Qmax (and then A p  < 0) .  

This work was supported in part by the National Science Foundation (grant 
MCS 75-08328) while the author was Visiting Associate Professor a t  Rensselaer 
Polytechnic Institute. 

Appendix 
The kernel Df given in (2.10) is 

Di = 0; = Di = 0: = 0,  

00 

-ail. 3c3(H - t,) x3(H - x3)/H3 + (Sj, + Sj,) 
- x3t3 sinh H K q  cosh (H - x, - t3 )Kq + HC, sinh x3Kq cosh t , ~ q  

- H2 sinh X3Kq sinh c 3 K q  coth H~q] / [ s inh~H~q  - ( H K ~ ) ' ]  

+ (ajl - Sj3) ~ H ( K ~ ) ~ c o s ~ K ~ [ x ~ ~ ~ c o s ~  (x, - t,) K q  +H(x3 + t,)sinh 6,~qsinh X , K ~  

K q  cos q~q[x,H cosh x 3 ~ q  sinh 5 , ~ q  
q= 1 

m 

q= 1 

- H coth HKq(x3 sinh c 3 K q  cosh x3Kq + c3 sinh x3Kq cosh &Kq)  

+ H2sinhx,~q~inh~3~q/sinh2H~q]/[sinh2H~q- (H~cq)~] 

j = 1,233, 7 = xl-tl, and 6, < x,. 

For x3 < (,, replace x, by H - 5, 5, by H - c3 and 7 by - 7. 
m 

qKq sin h t 3 K q  sinh ( H  - x,) ~q,/sinh HKq 

W 

+ x ~ q s i n q ~ q [  f x , H s i n h X , ~ q s i n h ~ , K q + ~ ~ x ~ ~ q H s i n h  (x3-t3)Kq 
q = l  

~ ~ , c ~ s i n h H ~ q s i n h ( H - t , - x , ) ~ q T  H(H-E,)sinhx,~qsinhC,~q 

+ H'KP(X3 sinh 5 3 K q  sinh (H - 53) K q  

1 - & sinh x3Kq sinh (H - 6,) ~q)/sinh H K ~ ]  [sinh2 H K q  - (H~q)']-l 

7 = xl-tl, and t3 < 5. 



726 N .  Limn 

The upper signs are to be used for D$ and the lower signs for D!. For x3 < & replace 
x3 by H - x , ,  E3 by H - c 3 ,  and 7 by -7. These expressions, although complicated 
looking, are easily calculable, all of them being decreasing exponential series. Tech- 
niques are similar to those given in LM. 
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